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The evolution of clustering and
bias in the galaxy distribution

By J. A. Peacock
Institute for Astronomy, Royal Observatory, Edinburgh EH9 3HJ, UK

This paper reviews the measurements of galaxy correlations at high redshifts, and
discusses how these may be understood in models of hierarchical gravitational col-
lapse. The clustering of galaxies at redshift one is much weaker than at present, and
this is consistent with the rate of growth of structure expected in an open universe.
If Ω = 1, this observation would imply that bias increases at high redshift, in conflict
with observed M/L values for known high-z clusters. At redshift 3, the population
of Lyman-limit galaxies displays clustering that is of similar amplitude to that seen
today. This is most naturally understood if the Lyman-limit population is a set of
rare recently formed objects. Knowing both the clustering and the abundance of
these objects it is possible to deduce, empirically, the fluctuation spectrum required
on scales that cannot be measured today owing to gravitational nonlinearities. Of
existing physical models for the fluctuation spectrum, the results are most closely
matched by a low-density spatially flat universe. This conclusion is reinforced by an
empirical analysis of CMB anisotropies, in which the present-day fluctuation spec-
trum is forced to have the observed form. Open models are strongly disfavoured,
leaving ΛCDM as the most successful simple model for structure formation.

Keywords: galaxy clustering; correlation functions; galaxy formation;
microwave background; high-redshift galaxies

1. Background

(a) Evolution of mass fluctuations

Attempts to understand the evolution of structure in the galaxy distribution start
with the assumption that this evolution is directly related to gravitationally driven
evolution of the dark matter. This is a well-understood problem, with the following
features.

1. Linear evolution. The fractional density contrast δ evolves according to linear
perturbation theory as

δ ∝ a(t)g(Ω); g(Ω) '
{
Ω0.65 open,
Ω0.23 flat,

(1.1)

where a(t) = (1 + z)−1 is the scale factor, and the growth suppression factor,
g(Ω), is much less important for k = 0 models; the universe only discovers
rather late that there is a non-zero Λ (Lahav et al . 1991; Carroll et al . 1992).

2. Stable clustering. In the opposite extreme of highly nonlinear clustering, there
is Peebles’s concept of stable clustering, in which virialized objects maintain a
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134 J. A. Peacock

fixed proper size and merely change their separation with time. This leads to the
common parametrization for the correlation function in co-moving coordinates:

ξ(r, z) = [r/r0]−γ(1 + z)−(3−γ+ε), (1.2)

where ε = 0 is stable clustering; ε = γ − 3 is constant co-moving clustering;
ε = γ − 1 is Ω = 1 linear-theory evolution.

Although this equation is frequently encountered, it is probably not applicable
to the real world, because most data inhabit the intermediate regime of 1 .
ξ . 100. Peacock (1997) showed that the expected evolution in this quasi-linear
regime is significantly more rapid: up to ε ' 3.

(b) General aspects of bias

Of course, there are good reasons to expect that the galaxy distribution will not
follow that of the dark matter. The main empirical argument in this direction comes
from the masses of rich clusters of galaxies. It has long been known that attempts
to ‘weigh’ the universe by multiplying the overall luminosity density by cluster M/L
ratios give apparent density parameters in the range Ω ' 0.2–0.3 (see, for example,
Carlberg et al . 1996).

An alternative argument is to use the abundance of rich clusters of galaxies in
order to infer the RMS fractional density contrast in spheres of radius 8 h−1 Mpc.
This calculation has been carried out in several different ways, with general agreement
on a figure close to

σ8 ' 0.57Ω−0.56
m (1.3)

(White et al . 1993; Eke et al . 1996; Viana & Liddle 1996). The observed appar-
ent value of σ8 in, for example, APM galaxies (Maddox et al . 1996) is about 0.95
(ignoring nonlinear corrections, which are small in practice, although this is not
obvious in advance). This says that Ω = 1 needs substantial positive bias, but that
Ω . 0.4 needs anti -bias. Although this cluster normalization argument depends on
the assumption that the density field obeys Gaussian statistics, the required degree
of bias is in reasonable agreement with what is inferred from cluster M/L ratios.

What effect does bias have on common statistical measures of clustering such as
correlation functions? We could be perverse and assume that the mass and light fields
are completely unrelated. If, however, we are prepared to make the more sensible
assumption that the light density is a nonlinear but local function of the mass density,
then there is a very nice result due to Coles (1993): the bias is a monotonic function
of scale. Explicitly, if scale-dependent bias is defined as

b(r) ≡ [ξgalaxy(r)/ξmass(r)]1/2, (1.4)

then b(r) varies monotonically with scale under rather general assumptions about
the density field. Furthermore, at large r, the bias will tend to a constant value,
which is the linear response of the galaxy-formation process.

There is certainly empirical evidence that bias in the real universe does work this
way. Consider figure 1, taken from Peacock (1997). This compares dimensionless
power spectra (∆2(k) = dσ2/ d ln k) for IRAS and APM galaxies. The comparison is
made in real space, to avoid distortions due to peculiar velocities. For IRAS galaxies,
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Figure 1. The real-space power spectra of optically selected APM galaxies (solid circles) and
IRAS galaxies (open circles), taken from Peacock (1997). IRAS galaxies show weaker clustering,
consistent with their suppression in high-density regions relative to optical galaxies. The relative
bias is a monotonic but slowly varying function of scale.

the real-space power was obtained from the projected correlation function:

Ξ(r) =
∫ ∞
−∞

ξ[(r2 + x2)1/2] dx. (1.5)

Saunders et al . (1992) describe how this statistic can be converted to other measures
of real-space correlation. For the APM galaxies, Baugh & Efstathiou (1993, 1994)
deprojected Limber’s equation for the angular correlation function w(θ) (discussed
below). These different methods yield rather similar power spectra, with a relative
bias that is perhaps only about 1.2 on large scale, increasing to about 1.5 on small
scales. The power-law portion for k & 0.2 h Mpc−1 is the clear signature of nonlinear
gravitational evolution, and the slow scale dependence of bias gives encouragement
that the galaxy correlations give a good measure of the shape of the underlying
mass-fluctuation spectrum.

2. Observations of high-redshift clustering

(a) Clustering at redshift 1

At z = 0, there is a degeneracy between Ω and the true normalization of the
spectrum. Since the evolution of clustering with redshift depends on Ω, studies at
higher redshifts should be capable of breaking this degeneracy. This can be done
without using a complete faint redshift survey, by using the angular clustering of a
flux-limited survey. If the form of the redshift distribution is known, the projection
effects can be disentangled in order to estimate the three-dimensional clustering at
the average redshift of the sample. For small angles, and where the redshift shell being
studied is thicker than the scale of any clustering, the spatial and angular correlation
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functions are related by Limber’s equation (see, for example, Peebles 1980):

w(θ) =
∫ ∞

0
y4φ2(y)C(y) dy

∫ ∞
−∞

ξ([x2 + y2θ2]1/2, z) dx, (2.1)

where y is a dimensionless co-moving distance (transverse part of the FRW metric
is [R(t)y dθ]2), and C(y) = [1 − ky2]−1/2; the selection function for radius y is nor-
malized so that

∫
y2φ(y)C(y) dy = 1. Less well known, but simpler, is the Fourier

analogue of this relation:

∆2
θ(K) =

π

K

∫
∆2([K/y], z)y5φ2(y)C(y) dy, (2.2)

where ∆2
θ is the angular power spectrum and K is the angular wavenumber (Kaiser

1992). In either case, the angular clustering tends to be sensitive to the spatial
clustering at the redshift, z̄, at which y2φ(y) peaks.

This relation has been used by many workers in order to interpret angular clus-
tering of faint galaxies (see, for example, Efstathiou et al . 1991; Neuschaefer et al .
1991; Couch et al . 1993; Roche et al . 1993). The general conclusion was always that
clustering seemed to be weaker in the past, but the rate of evolution was not very
well tied down, owing to uncertainties in the redshift distribution for faint galaxies,
plus the fact that projection effects leave only a very small clustering signal. The
uncertainties in interpreting w(θ) for faint galaxies were first convincingly overcome
by the CFRS team, who assembled a large enough redshift survey to construct the
correlation function directly out to z ' 1 (Le Fèvre et al . 1996). Their results were
well described by r0 ' 2 h−1 Mpc at z = 1, i.e. evolution at about the ε = 1 rate.
Other groups have found similar results (for example, Carlberg et al . 1997), although
Carlberg’s paper in this issue argues for slightly slower evolution. Although this rate
of evolution is in accord with the expected linear-theory evolution in an Ω = 1 model,
the discussion of § 1 a shows that such a result is in fact more consistent with lower-
density models. Since the data are in the quasi-linear regime, the expected evolution
in a critical-density universe would be much more rapid.

The observed clustering at z ' 1 is thus larger than would be expected if Ω = 1.
There is no difficulty with this, since we shall see below that bias is expected to
evolve in the sense of being higher at early times. However, consider the implications
for cluster M/L ratios: we have already seen that the observed degree of bias at
z = 0 must reduce these by about a factor of five in the cores of rich clusters. If the
bias at z = 1 is significantly greater than today, this trend must continue, so that the
apparent ‘Ω’ from high-z clusters would be expected to be very small. Conversely, if
Ω is low today, the z = 1 clustering would be nearly unbiased and we would expect
to see the true Ω at that time, which should have evolved to be close to unity. So,
this leaves the nice paradox that the way to prove Ω = 1 today is to observe a very
small ‘Ω’ at z = 1, and vice versa.

It has recently become possible to carry out this test, through the detection of mas-
sive clusters at redshifts near unity. Many of these have been found through X-ray
detections, which almost guarantees a high virial temperature and hence a high mass
(e.g. the EMSS sample: Henry et al . 1992). The existence of massive clusters at high
redshift is a potential problem for high-density models, owing to the more rapid evo-
lution of the mass fluctuations in this case, and it has been claimed thatΩ = 1 is ruled
out (see, for example, Luppino & Gioia 1995; Henry 1997). However, the M/L argu-
ment is more powerful since only a single cluster is required, and a complete survey is
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not necessary. Two particularly good candidates at z ' 0.8 are described by Clowe et
al . (1998); these are clusters where significant weak gravitational-lensing distortions
are seen, allowing a robust determination of the total cluster mass. The mean V -band
M/L in these clusters is 230 solar units, which is close to typical values in z = 0 clus-
ters. However, the co-moving V -band luminosity density of the universe is higher at
early times than at present by about a factor of (1+z)2.5 (Lilly et al . 1996), so this is
equivalent to M/L ' 1000, implying an apparent ‘Ω’ of close to unity. In summary,
the known degree of bias today coupled with the moderate evolution in correlation
function back to z = 1 implies that, for Ω = 1, the galaxy distribution at this time
would have to consist very nearly of a ‘painted-on’ pattern that is not accompanied
by significant mass fluctuations. Such a picture cannot be reconciled with the healthy
M/L ratios that are observed in real clusters at these redshifts, and this seems to be
a strong argument that we do not live in an Einstein–de Sitter universe.

(b) Clustering of Lyman-limit galaxies at redshift 3

The most exciting recent development in observational studies of galaxy clustering
is the detection by Steidel et al . (1998) of strong clustering in the population of
Lyman-limit galaxies at z ' 3. The evidence takes the form of a redshift histogram
binned at ∆z = 0.04 resolution over a field 8.′7 × 17.′6 in extent. For Ω = 1 and
z = 3, this probes the density field using a cell with dimensions

cell = 15.4× 7.6× 15.0 [h−1 Mpc]3. (2.3)

Conveniently, this has a volume equivalent to a sphere of radius 7.5 h−1 Mpc, so it
is easy to measure the bias directly by reference to the known value of σ8. Since the
degree of bias is large, redshift-space distortions from coherent infall are small; the
cell is also large enough that the distortions of small-scale random velocities at the
few hundred km s−1 level are also small. Using the model of eqn (11) of Peacock
(1997) for the anisotropic redshift-space power spectrum and integrating over the
exact anisotropic window function, the above simple volume argument is found to
be accurate to a few per cent for reasonable power spectra:

σcell ' b(z = 3)σ7.5(z = 3), (2.4)

defining the bias factor at this scale. The results of § 1 (see also Mo & White 1996)
suggest that the scale-dependence of bias should be weak.

In order to estimate σcell, simulations of synthetic redshift histograms were made,
using the method of Poisson-sampled lognormal realizations described by Broadhurst
et al . (1995): using a χ2 statistic to quantify the non-uniformity of the redshift
histogram, it appears that σcell ' 0.9 is required in order for the field of Steidel et al .
(1998) to be typical. It is then straightforward to obtain the bias parameter since,
for a present-day correlation function ξ(r) ∝ r−1.8,

σ7.5(z = 3) = σ8 × [8/7.5]1.8/2 × 1
4 ' 0.146, (2.5)

implying

b(z = 3 | Ω = 1) ' 0.9/0.146 ' 6.2. (2.6)

Steidel et al . (1998) use a rather different analysis that concentrates on the highest
peak alone, and obtain a minimum bias of 6, with a preferred value of 8. They use
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the Eke et al . (1996) value of σ8 = 0.52, which is on the low side of the published
range of estimates. Using σ8 = 0.55 would lower their preferred b to 7.6. Note that,
with both these methods, it is much easier to rule out a low value of b than a high
one; given a single field, it is possible that a relatively ‘quiet’ region of space has
been sampled, and that much larger spikes remain to be found elsewhere. A more
detailed analysis of several further fields by Adelberger et al . (1998) in fact yields
a bias figure very close to that given above, so the first field was apparently not
unrepresentative.

Having arrived at a figure for bias if Ω = 1, it is easy to translate to other
models, since σcell is observed, independent of cosmology. For low Ω models, the cell
volume will increase by a factor of [S2

k(r) dr]/[S2
k(r1) dr1]; comparing with present-

day fluctuations on this larger scale will tend to increase the bias. However, for low
Ω, two other effects increase the predicted density fluctuation at z = 3: the cluster
constraint increases the present-day fluctuation by a factor of Ω−0.56, and the growth
between redshift 3 and the present will be less than a factor of four. Applying these
corrections gives

b(z = 3 | Ω = 0.3)
b(z = 3 | Ω = 1)

=

{
0.42 (open),
0.60 (flat),

(2.7)

which suggests an approximate scaling as b ∝ Ω0.72 (open) or Ω0.42 (flat). The
significance of this observation is thus to provide the first convincing proof for the
reality of galaxy bias: for Ω ' 0.3, bias is not required in the present universe, but
we now see that b > 1 is needed at z = 3 for all reasonable values of Ω.

(c) Clustering of high-redshift AGN

The strength of clustering for Lyman-limit galaxies fits in reasonably well with
what is known about clustering of AGN. A co-moving correlation length of r0 '
6.5 h−1 Mpc has been measured for radio-quiet QSOs at 〈z〉 ' 1.5 (Shanks & Boyle
1994; Croom & Shanks 1996). This value is much larger than the clustering of opti-
cally selected galaxies at z ' 1, but this may not be unreasonable, since imaging
of QSO hosts reveals them to be several-L∗ objects, comparable in stellar mass to
radio galaxies (see, for example, Dunlop et al . 1993; Taylor et al . 1996). It is plausi-
ble that the clustering of these massive galaxies at z ' 1 will be enhanced through
exactly the same mechanisms that enhance the clustering of Lyman-limit galaxies at
z ' 3. Of course, this does not rule out more complex pictures based on ideas such
as close interactions in rich environments being necessary to trigger AGN. However,
as emphasized below, the mass and rareness of these objects sets a minimum level of
bias. It is to be expected that this bias will increase at higher redshifts, and so one
would not expect quasar clustering to decline at higher redshifts. Indeed, it has been
claimed that ξ either stays constant at the highest redshifts (Andreani & Cristiani
1992; Croom & Shanks 1996), or even increases (Stephens et al . 1997).

Radio-source clustering at high redshifts has been detected only in projection. The
FIRST survey has measured w(θ) to high precision for a limit of 1 mJy at 1.4 GHz
(Cress et al . 1996). Their result detects clustering at separations between 0.02 and
2 deg, and is fitted by a power law:

w(θ) = 0.003[θ/deg]−1.1. (2.8)
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There had been earlier claims of detections of angular clustering, notably the 87GB
survey (Loan et al . 1997), but these were of only bare significance (although, in ret-
rospect, the level of clustering in 87GB is consistent with the FIRST measurement).
Discussion of the 87GB and FIRST results in terms of Limber’s equation has tended
to focus on values of ε in the region of zero. Cress et al . (1996) concluded that the
w(θ) results were consistent with the PN91 value of r0 ' 10 h−1 Mpc (although
they were not very specific about ε). Loan et al . (1997) measured w(1◦) ' 0.005
for a 5 GHz limit of 50 mJy, and inferred r0 ' 12 h−1 Mpc for ε = 0, falling to
r0 ' 9 h−1 Mpc for ε = −1.

The reason for this strong degeneracy between r0 and ε is that r0 parametrizes the
z = 0 clustering, whereas the observations refer to a typical redshift of around unity.
This means that r0(z = 1) can be inferred quite robustly to be about 7.5 h−1 Mpc,
without much dependence on the rate of evolution. Since the strength of clustering
for optical galaxies at z = 1 is known to correspond to the much smaller number of
r0 ' 2 h−1 Mpc (see, for example, Le Fèvre et al . 1996), we see that radio galaxies
at this redshift have a relative bias parameter of close to 3. The explanation for this
high degree of bias is probably similar to that which applies in the case of QSOs: in
both cases we are dealing with AGN hosted by rare massive galaxies.

3. Formation and bias of high-redshift galaxies

The challenge now is to ask how these results can be understood in current models
for cosmological structure formation. It is widely believed that the sequence of cos-
mological structure formation was hierarchical, originating in a density power spec-
trum with increasing fluctuations on small scales. The large-wavelength portion of
this spectrum is accessible to observation today through studies of galaxy clustering
in the linear and quasi-linear regimes. However, nonlinear evolution has effectively
erased any information on the initial spectrum for wavelengths below about 1 Mpc.
The most sensitive way of measuring the spectrum on smaller scales is via the abun-
dances of high-redshift objects; the amplitude of fluctuations on scales of individual
galaxies governs the redshift at which these objects first undergo gravitational col-
lapse. The small-scale amplitude also influences clustering, since rare early forming
objects are strongly correlated, as first realized by Kaiser (1984). It is therefore pos-
sible to use observations of the abundances and clustering of high-redshift galaxies to
estimate the power spectrum on small scales, and the following section summarizes
the results of this exercise, as given by Peacock et al . (1998).

(a) Press–Schechter apparatus

The standard framework for interpreting the abundances of high-redshift objects
in terms of structure-formation models was outlined by Efstathiou & Rees (1988).
The formalism of Press & Schechter (1974) gives a way of calculating the fraction
Fc of the mass in the universe which has collapsed into objects more massive than
some limit M :

Fc(> M, z) = 1− erf
[

δc√
2σ(M)

]
. (3.1)

Here, σ(M) is the RMS fractional density contrast obtained by filtering the linear-
theory density field on the required scale. In practice, this filtering is usually per-
formed with a spherical ‘top hat’ filter of radius R, with a corresponding mass of
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4
3πρbR

3, where ρb is the background density. The number δc is the linear-theory
critical overdensity, which for a ‘top-hat’ overdensity undergoing spherical collapse
is 1.686; virtually independent of Ω. This form describes numerical simulations very
well (see, for example, Ma & Bertschinger 1994). The main assumption is that the
density field obeys Gaussian statistics, which is true in most inflationary models.
Given some estimate of Fc, the number σ(R) can then be inferred. Note that for rare
objects this is a pleasingly robust process: a large error in Fc will give only a small
error in σ(R), because the abundance is exponentially sensitive to σ.

Total masses are, of course, ill-defined, and a better quantity to use is the velocity
dispersion. The circular orbital velocity for a halo of mass M and proper radius r is

V 2
c =

GM

r
. (3.2)

For a spherically collapsed object this velocity can be converted directly into a
Lagrangian co-moving radius that contains the mass of the object within the virial-
ization radius (see, for example, White et al . 1993):

R/h−1 Mpc =
21/2[Vc/100 km s−1]

Ω
1/2
m (1 + zc)1/2f

1/6
c

. (3.3)

Here, zc is the redshift of virialization; Ωm is the present value of the matter density
parameter; fc is the density contrast at virialization of the newly collapsed object
relative to the background, which is adequately approximated by

fc = 178/Ω0.6
m (zc), (3.4)

with only a slight sensitivity to whether Λ is non-zero (Eke et al . 1996).
For isothermal-sphere haloes, the velocity dispersion is

σv = Vc/
√

2. (3.5)

Given a formation redshift of interest, and a velocity dispersion, there is then a direct
route to the Lagrangian radius from which the proto-object collapsed.

(b) Abundances and masses of high-redshift objects

Three classes of high-redshift object can be used to set constraints on the small-
scale power spectrum at high redshift as follows.

(i) Damped Lyman-α systems

Damped Lyman-α absorbers are systems with HI column densities greater than
ca. 2 × 1024 m−2 (Lanzetta et al . 1991). If the fraction of baryons in the virialized
dark matter haloes equals the global value ΩB, then data on these systems can be
used to infer the total fraction of matter that has collapsed into bound structures
at high redshifts (Ma & Bertschinger 1994; Mo & Miralda-Escudé 1994; Kauffmann
& Charlot 1994; Klypin et al . 1995). The highest measurement at 〈z〉 ' 3.2 implies
ΩHI ' 0.0025h−1 (Lanzetta et al . 1991; Storrie-Lombardi et al . 1996). IfΩBh

2 = 0.02
is adopted, as a compromise between the lower Walker et al . (1991) nucleosynthesis
estimate and the more recent estimate of 0.025 from Tytler et al . (1996), then

Fc =
ΩHI

ΩB
' 0.12h, (3.6)
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The evolution of galaxy clustering and bias 141

for these systems. In this case alone, an explicit value of h is required in order to
obtain the collapsed fraction; h = 0.65 is assumed.

The photoionizing background prevents virialized gaseous systems with circular
velocities of less than about 50 km s−1 from cooling efficiently, so that they cannot
contract to the high-density contrasts characteristic of galaxies (see, for example,
Efstathiou 1992). Mo & Miralda-Escudé (1994) used the circular velocity range 50–
100 km s−1 (σv = 35–70 km s−1), to model the damped Lyman-α systems. Reinforc-
ing the photoionization argument, detailed hydrodynamic simulations imply that the
absorbers are not expected to be associated with very massive dark-matter haloes
(Haehnelt et al . 1998). This assumption is consistent with the rather low luminosity
galaxies detected in association with the absorbers in a number of cases (Le Brun et
al . 1996).

(ii) Lyman-limit galaxies

Steidel et al . (1996) identified star-forming galaxies between z = 3 and 3.5 by
looking for objects with a spectral break redwards of the U band. The treatment of
these Lyman-limit galaxies in this paper is similar to that of Mo & Fukugita (1996),
who compared the abundances of these objects to predictions from various models.
Steidel et al . (1996) give the co-moving density of their galaxies as

N(Ω = 1) ' 10−2.54 (h−1 Mpc)−3. (3.7)

This is a high number density, comparable to that of L∗ galaxies in the present
universe. The mass of L∗ galaxies corresponds to collapse of a Lagrangian region of
volume ca. 1 Mpc3, so the collapsed fraction would be a few tenths of a per cent if
the Lyman-limit galaxies had similar masses.

Direct dynamical determinations of these masses are still lacking in most cases.
Steidel et al . (1996) attempt to infer a velocity width by looking at the equiva-
lent width of the C and Si absorption lines. These are saturated lines, and so the
equivalent width is sensitive to the velocity dispersion; values in the range

σv ' 180–320 km s−1 (3.8)

are implied. These numbers may measure velocities that are not due to bound mate-
rial, in which case they would give an upper limit to Vc/

√
2 for the dark halo. A more

recent measurement of the velocity width of the Hα emission line in one of these
objects gives a dispersion close to 100 km s−1 (M. Pettini, personal communication),
consistent with the median velocity width for Lyα of 140 km s−1 measured in similar
galaxies in the HDF (Lowenthal et al . 1997). Of course, these figures could underes-
timate the total velocity dispersion, since they are dominated by emission from the
central regions only. For the present, the range of values σv = 100–320 km s−1 will
be adopted, and the sensitivity to the assumed velocity will be indicated. In practice,
this uncertainty in the velocity does not produce an important uncertainty in the
conclusions.

(iii) Red radio galaxies

An especially interesting set of objects are the reddest optical identifications of
1 mJy radio galaxies, for which deep absorption-line spectroscopy has proved that
the red colours result from a well-evolved stellar population, with a minimum stellar
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age of 3.5 Gyr for 53W091 at z = 1.55 (Dunlop et al . 1996; Spinrad et al . 1997), and
4.0 Gyr for 53W069 at z = 1.43 (Dunlop 1998). Such ages push the formation era
for these galaxies back to extremely high redshifts, and it is of interest to ask what
level of small-scale power is needed in order to allow this early formation.

Two extremely red galaxies were found at z = 1.43 and 1.55, over an area 1.68×
10−3 sr, so a minimal co-moving density is from one galaxy in this redshift range:

N(Ω = 1) & 10−5.87 (h−1 Mpc)−3. (3.9)

This figure is comparable to the density of the richest Abell clusters, and is thus in
reasonable agreement with the discovery that rich high-redshift clusters appear to
contain radio-quiet examples of similarly red galaxies (Dickinson 1995).

Since the velocity dispersions of these galaxies are not observed, they must be
inferred indirectly. This is possible because of the known present-day Faber–Jackson
relation for ellipticals. For 53W091, the large-aperture absolute magnitude is

MV (z = 1.55 | Ω = 1) ' −21.62− 5 log10 h (3.10)

(measured directly in the rest frame). According to solar-metallicity spectral syn-
thesis models, this would be expected to fade by about 0.9 mag. between z = 1.55
and the present, for an Ω = 1 model of present age 14 Gyr (note that Bender et al .
(1996) have observed a shift in the zero-point of the M–σv relation out to z = 0.37
of a consistent size). If we compare these numbers with the σv–MV relation for
Coma (m −M = 34.3 for h = 1) taken from Dressler (1984), this predicts velocity
dispersions in the range,

σv = 222–292 km s−1. (3.11)

This is a very reasonable range for a giant elliptical, and it is adopted in the following
analysis.

Having established an abundance and an equivalent circular velocity for these
galaxies, the treatment of them will differ in one critical way from the Lyman-α and
Lyman-limit galaxies. For these, the normal Press–Schechter approach assumes the
systems under study to be newly born. For the Lyman-α and Lyman-limit galaxies,
this may not be a bad approximation, since they are evolving rapidly and/or dis-
play high levels of star-formation activity. For the radio galaxies, conversely, their
inactivity suggests that they may have existed as discrete systems at redshifts much
higher than z ' 1.5. The strategy will therefore be to apply the Press–Schechter
machinery at some unknown formation redshift, and see what range of redshift gives
a consistent degree of inhomogeneity.

4. The small-scale fluctuation spectrum

(a) The empirical spectrum

Figure 2 shows the σ(R) data which result from the Press–Schechter analysis, for
three cosmologies. The σ(R) numbers measured at various high redshifts have been
translated to z = 0 using the appropriate linear growth law for density perturbations.

The open symbols give the results for the Lyman-limit (largest-R) and Lyman-α
(smallest-R) systems. The approximately horizontal error bars show the effect of the
quoted range of velocity dispersions for a fixed abundance; the vertical errors show
the effect of changing the abundance by a factor of two at fixed velocity dispersion.
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(c)

(b)

(a)

Figure 2. The present-day linear fractional RMS fluctuation in density averaged in spheres of
radius R. The data points are Lyman-α galaxies (open cross) and Lyman-limit galaxies (open
circles) The diagonal band with solid points shows red radio galaxies with assumed collapse
redshifts 2, 4, . . . , 12. The vertical error bars show the effect of a change in abundance by a
factor of two. The horizontal errors correspond to different choices for the circular velocities of
the dark-matter haloes that host the galaxies. The shaded region at large R gives the results
inferred from galaxy clustering. The lines show CDM and MDM predictions, with a large-scale
normalization of σ8 = 0.55 for Ω = 1 or σ8 = 1 for the low-density models. (a) Ω = 0.3 open;
(b) Ω = 0.3 flat; (c) Ω = 1.

The locus implied by the red radio galaxies sits in between. The different points
show the effects of varying collapse redshift: zc = 2, 4, . . . , 12 (lowest redshift gives
lowest σ(R)). Clearly, collapse redshifts of 6–8 are favoured for consistency with
the other data on high-redshift galaxies, independent of theoretical preconceptions
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and independent of the age of these galaxies. This level of power (σ[R] ' 2 for
R ' 1 h−1 Mpc) is also in very close agreement with the level of power required to
produce the observed structure in the Lyman-α forest (Croft et al . 1998), so there
is a good case to be made that the fluctuation spectrum has now been measured in
a consistent fashion down to below R ' 1 h−1 Mpc.

The shaded region at larger R shows the results deduced from clustering data (Pea-
cock 1997). It is clear that an Ω = 1 universe requires the power spectrum at small
scales to be higher than would be expected on the basis of an extrapolation from the
large-scale spectrum. Depending on assumptions about the scale dependence of bias,
such a ‘feature’ in the linear spectrum may also be required in order to satisfy the
small-scale present-day nonlinear galaxy clustering (Peacock 1997). Conversely, for
low-density models, the empirical small-scale spectrum appears to match reasonably
smoothly onto the large-scale data.

Figure 2 also compares the empirical data with various physical power spectra.
A CDM model (using the transfer function of Bardeen et al . 1986) with shape
parameter Γ = Ωh = 0.25, is shown as a reference for all models. This appears
to have approximately the correct shape, although it overpredicts the level of small-
scale power somewhat in the low-density cases. A better empirical shape is given by
MDM with Ωh ' 0.4 and Ων ' 0.3. However, this model only makes physical sense
in a universe with high Ω, and so it is only shown as the lowest curve in figure 2c,
reproduced from the fitting formula of Pogosyan & Starobinsky (1995; see also Ma
1996). This curve fails to supply the required small-scale power, by about a factor of
three in σ; lowering Ων to 0.2 still leaves a very large discrepancy. This conclusion
is in agreement with, for example, Mo & Miralda-Escudé (1994), Ma & Bertschinger
(1994), Ma et al . (1997) and Gardner et al . (1997).

All the models in figure 2 assume n = 1; in fact, consistency with the COBE
results for this choice of σ8 and Ωh requires a significant tilt for flat low-density
CDM models, n ' 0.9 (whereas open CDM models require n substantially above
unity). Over the range of scales probed by LSS, changes in n are largely degenerate
with changes in Ωh, but the small-scale power is more sensitive to tilt than to Ωh.
Tilting the Ω = 1 models is not attractive, since it increases the tendency for model
predictions to lie below the data. However, a tilted low-Ω flat CDM model would
agree moderately well with the data on all scales, with the exception of the ‘bump’
around R ' 30 h−1 Mpc. Testing the reality of this feature will therefore be an
important task for future generations of redshift survey.

(b) Collapse redshifts and ages for red radio galaxies

Are the collapse redshifts inferred above consistent with the age data on the red
radio galaxies? First bear in mind that in a hierarchy some of the stars in a galaxy
will inevitably form in subunits before the epoch of collapse. At the time of final
collapse, the typical stellar age will be some fraction α of the age of the universe at
that time:

age = t(zobs)− t(zc) + αt(zc). (4.1)

We can rule out α = 1 (i.e. all stars forming in small subunits just after the big
bang). For present-day ellipticals, the tight colour-magnitude relation only allows
an approximate doubling of the mass through mergers since the termination of star

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The evolution of galaxy clustering and bias 145

  

Figure 3. The age of a galaxy at z = 1.5, as a function of its collapse redshift (assuming an
instantaneous burst of star formation). In all cases, the present age of the universe is forced to
be 14 Gyr.

formation (Bower et al . 1992). This corresponds to α ' 0.3 (Peacock 1991). A non-
zero α just corresponds to scaling the collapse redshift as

apparent(1 + zc) ∝ (1− α)−2/3, (4.2)

since t ∝ (1 + z)−3/2 at high redshifts for all cosmologies. For example, a galaxy
which collapsed at z = 6 would have an apparent age corresponding to a collapse
redshift of 7.9 for α = 0.3.

Converting the ages for the galaxies to an apparent collapse redshift depends on
the cosmological model, but particularly on H0. Some of this uncertainty may be
circumvented by fixing the age of the universe. After all, it is of no interest to ask
about formation redshifts in a model with, for example, Ω = 1, h = 0.7, when the
whole universe then has an age of only 9.5 Gyr. If Ω = 1 is to be tenable, then either
h < 0.5 against all the evidence or there must be an error in the stellar evolution
time-scale. If the stellar time-scales are wrong by a fixed factor, then these two
possibilities are degenerate. It therefore makes sense to measure galaxy ages only in
units of the age of the universe; or, equivalently, to choose freely an apparent Hubble
constant that gives the universe an age comparable to that inferred for globular
clusters. In this spirit, figure 3 gives apparent ages as a function of effective collapse
redshift for models in which the age of the universe is forced to be 14 Gyr (see, for
example, Jimenez et al . 1996).

This plot shows that the ages of the red radio galaxies are not permitted very much
freedom. Formation redshifts in the range 6–8 predict an age of close to 3.0 Gyr for
Ω = 1, or 3.7 Gyr for low-density models, irrespective of whether Λ is non-zero. The
age–zc relation is rather flat, and this gives a robust estimate of age once we have
some idea of zc through the abundance arguments. It is therefore rather satisfying
that the ages inferred from matching the rest-frame UV spectra of these galaxies are
close to the above figures.
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Figure 4. The bias parameter at z = 3.2 predicted for the Lyman-limit galaxies, as a function
of their assumed circular velocity. A substantial bias in the region of b ' 6 is predicted rather
robustly.

(c) The global picture of galaxy formation

It is interesting to note that it has been possible to construct a consistent picture
that incorporates both the large numbers of star-forming galaxies at z . 3 and the
existence of old systems which must have formed at very much larger redshifts. A
recent conclusion from the numbers of Lyman-limit galaxies and the star-formation
rates seen at z ' 1 has been that the global history of star formation peaked at z ' 2
(Madau et al . 1996). This leaves three possibilities open for the very old systems:
they may be simply the rare precursors of this process, and form unusually early; they
may be a relic of a second peak in activity at higher redshift, such as is commonly
invoked for the origin of all spheroidal components; or dust obscuration may mean
that the global star-formation rate has been underestimated. While a bimodal or
dust-obscured history of star formation cannot be rejected, the rareness of the red
radio galaxies indicates that there is no difficulty with the first picture. This can
be demonstrated quantitatively by integrating the total amount of star formation at
high redshift. According to Madau et al . (1996), the star-formation rate at z = 4 is

ρ̇∗ ' 107.3hM� Gyr−1 Mpc−3, (4.3)

declining roughly as (1 + z)−4. This is probably an underestimate by a factor of at
least three, as indicated by suggestions of dust in the Lyman-limit galaxies (Pettini
et al . 1997), and by the prediction of Pei & Fall (1995), based on high-z element
abundances. If we scale by a factor of three, and integrate to find the total density
in stars produced at z > 6, this yields

ρ∗(zf > 6) ' 106.2M� Mpc−3. (4.4)

Since the red mJy galaxies have a density of 10−5.87h3 Mpc−3 and stellar masses of
order 1011M�, there is clearly no conflict with the idea that these galaxies are the
first stellar systems of L∗-size which form en route to the general era of star and
galaxy formation.

Phil. Trans. R. Soc. Lond. A (1999)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


The evolution of galaxy clustering and bias 147

(d) Predictions for biased clustering at high redshifts

An interesting aspect of these results is that the level of power on 1 Mpc scales
is only moderate: σ(1 h−1 Mpc) ' 2. At z ' 3, the corresponding figure would
have been much lower, making systems like the Lyman-limit galaxies rather rare.
For Gaussian fluctuations, as assumed in the Press–Schechter analysis, such systems
will be expected to display spatial correlations that are strongly biased with respect
to the underlying mass. The linear bias parameter depends on the rareness of the
fluctuation and the RMS of the underlying field as

b = 1 +
ν2 − 1
νσ

= 1 +
ν2 − 1
δc

(4.5)

(Kaiser 1984; Cole & Kaiser 1989; Mo & White 1996), where ν = δc/σ, and σ2 is the
fractional mass variance at the redshift of interest.

In this analysis, δc = 1.686 is assumed. Variations of order 10% in this number have
been suggested by authors who have studied the fit of the Press–Schechter model
to numerical data. These changes would merely scale b − 1 by a small amount; the
key parameter is ν, which is set entirely by the collapsed fraction. For the Lyman-
limit galaxies, typical values of this parameter are ν ' 3, and it is clear that very
substantial values of bias are expected, as illustrated in figure 4.

This diagram shows how the predicted bias parameter varies with the assumed
circular velocity, for a number density of galaxies fixed at the level observed by
Steidel et al . (1996). The sensitivity to cosmological parameter is only moderate;
at Vc = 200 km s−1, the predicted bias is b ' 4.6, 5.5, 5.8 for the open, flat and
critical models, respectively. These numbers scale approximately as V −0.4

c , and b
is within 20% of 6 for most plausible parameter combinations. Strictly, the bias
values determined here are upper limits, since the numbers of collapsed haloes of this
circular velocity could in principle greatly exceed the numbers of observed Lyman-
limit galaxies. However, the undercounting would have to be substantial: increasing
the collapsed fraction by a factor of 10 reduces the implied bias by a factor of about
1.5. A substantial bias seems difficult to avoid, as has been pointed out in the context
of CDM models by Baugh et al . (1998).

Comparing the bias values in figure 4 with those observed directly (§ 2 b), we see
that the observed value of b is quite close to the prediction in the case of Ω = 1;
suggesting that the simplest interpretation of these systems as collapsed rare peaks
may well be roughly correct. Indeed, for high circular velocities there is a danger
of exceeding the predictions, and it would create something of a difficulty for high-
density models if a velocity as high as Vc ' 300 km s−1 were to be established as
typical of the Lyman-limit galaxies. For lowΩ, the ‘observed’ bias falls faster than the
predictions, so there is less danger of conflict. For a circular velocity of 200 km s−1,
we would need to say that the collapsed fraction was underestimated by roughly a
factor of 10 (i.e. increase the values of σ in figure 2 by a factor of ca. 1.5) in order
to lower the predicted bias sufficiently, either by postulating that the conversion
from velocity to R is systematically in error, or by suggesting that there may be
many haloes that are not detected by the Lyman-limit search technique. It is hard
to argue that either of these possibilities are completely ruled out. Nevertheless, we
have reached the paradoxical conclusion that the observed large-amplitude clustering
at z = 3 is more naturally understood in an Ω = 1 model, whereas one might have
expected the opposite conclusion.
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5. Empirical predictions for CMB anisotropies

The recurring theme of this paper has been that it is now possible to measure the
fluctuation spectrum empirically to an interesting precision. On large scales, this is
possible using galaxy clustering to give the shape of the spectrum, with the cluster
abundance giving the normalization. On small scales, we have seen how information
on high-redshift galaxies gives answers that are reasonably consistent with extrapo-
lation of the large-scale results. This situation is to be contrasted with the normal
approach to measurements of CMB anisotropies, where the results are fitted by vari-
ants on CDM models, adjusting the parameters (Ωm, Ωv, ΩB, h, n). If CMB data
alone are considered, many combinations of these parameters can fit existing results;
however, in many cases the predicted z = 0 matter fluctuation spectrum will be in
gross disagreement with observation.

This problem is often tackled by requiring acceptable models to fit some statistic
such as σ8. However, an alternative route is to recall that the CMB calculations
are entirely linear, and that they are based on the evolution of a given Fourier
mode from last scattering at z ' 1100 to the present. The equations involved are
time symmetric, so there is no reason why the integration cannot be carried out
backwards. If we believe that the amplitude of gravitational potential fluctuations
at z = 0 has been measured as a function of scale, then it makes sense to place
these fluctuations at last scattering and deduce an empirical prediction of the CMB
fluctuations. In practice, this can be achieved by a process that resembles ‘designer
inflation’: assume a suitable fluctuation spectrum at z > 1100 such that any features
in the transfer function are cancelled, leaving the desired power spectrum at z = 0.
Described in this way, the process sounds unnatural; however, the standard lore
suggests that perturbations are generated at z ∼ 1028, so there is much more room
at z > 1100 for unknown extra physics than there is at z < 1100.

This approach still leaves free the global cosmological parameters. The CMB
results clearly depend on Ωm and Ωv, since the inferred fluctuation spectrum depends
on these (although only weakly on Ωv). The other parameters can be fixed at their
empirical values, taken here to be h = 0.65 and ΩB/Ω = 0.1. For an extreme empiri-
cal approach, no power would be assumed beyond the largest scale at which clustering
is observed in the galaxy distribution (k ' 0.02 h Mpc−1). A reasonable alternative,
adopted here, is to allow the spectrum to vary with some power-law index n on larger
scales. Finally, the collisionless dark matter is taken to be cold and the fluctuations
are assumed to be isentropic; variations of either of these assumptions would lead to
larger fluctuations.

The results of this calculation are shown in figure 5, which was generated using
a modified form of the CMBFAST code of Seljak & Zaldarriaga (1996). This looks
quite different from the plots usually seen in this field, for the following reasons.

1. The normalization comes direct from the power spectrum; no attempt has been
made to fit the CMB data.

2. The models are thus not COBE normalized, although they could be made to fit
COBE by adjusting the large-wavelength index n. Open models would require
n > 1, flat models n < 1.

3. Adjusting n in this way only affects C` for ` . 300, since larger multipoles
project to parts of k space probed by galaxy clustering.
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Figure 5. The angular power spectrum for the temperature fluctuations in the CMB. These pre-
dictions fix the matter power spectrum today to have the shape inferred from galaxy clustering
and the normalization inferred from the abundance of rich clusters. The ‘observed’ values are
adopted for the other cosmological parameters: h = 0.65, ΩB/Ω = 0.1. At long wavelengths,
where no galaxy clustering data exist, the spectrum is assumed to be scale invariant; failure
to match COBE thus indicates that tilt is required. However, the power at ` ∼ 2000 is nearly
spectrum independent, since this is where the normalization scale sits. The rejection of open
models is thus very nearly model independent.

The last point is especially important, since it means that it is the high-` clustering
where robust predictions can be made. The k ' 0.2 h Mpc−1 waves that determine
σ8 project to ` ' 1200 for Ω = 1, or to ` ' 1200/Ω and 1200/Ω0.4 for open and
flat models, respectively. This difference in angular-diameter distance is half of the
reason why the predictions for open models in figure 5 are so much higher than the
predictions for flat models with the same parameters. The other difference is the
difference in linear growth suppression factors, which amounts roughly to a factor of
Ω0.4 (equation (1.1)). Since the present-day power spectrum and its normalization
is highly insensitive to Λ, there is thus a very simple recipe for predicting the CMB
anisotropies for a given open model: calculate the corresponding flat case, boost the
results by a factor of Ω−0.8 and translate the spectrum to higher ` by a factor of
Ω−0.6. This recipe fails for the lowest multipoles, where spatial curvature is impor-
tant. However, the critical ` ∼ 1000 results follow this scaling almost exactly.

The conclusion is, therefore, that for any flat model that roughly fits the CMB
data, its open counterpart will be grossly in error, and this is just what is seen in
practice. Flat models with Ω & 0.3 are acceptable, but open models are qualitatively
wrong unless Ω & 0.5. It is interesting to note that this conclusion comes not so much
from the modern data at ` ' 200, but from the long-standing OVRO upper limit at
` ' 2000. The inconsistency of this result with most open models was noted by Bond
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& Efstathiou (1984), and all that has changed since then is that we now prefer to use
the cluster normalization, rather than the unbiased normalization chosen by Bond &
Efstathiou. This raises the amplitude for low-Ω models, making it that much harder
for them to get anywhere near to the data.

6. Conclusions

The data on the abundances and clustering of both radio-loud and radio-quiet galax-
ies at high redshift appear to be in good quantitative agreement with the expecta-
tion of models in which structure formation proceeds through hierarchical merging
of haloes of dark matter. Furthermore, the existing data yield an empirical mea-
surement of the fluctuation spectrum on sub-Mpc scales. In general, this small-scale
spectrum is close to what would be expected from an extrapolation of LSS measure-
ments, but there are deviations in detail: Ω = 1 places the small-scale data somewhat
above the LSS extrapolation, whereas open low-Ω models suffer from the opposite
problem; low-Ω Λ-dominated models fare somewhat better, especially with a slight
tilt. These last models also account well for the ` ∼ 1000 CMB anisotropies if the
dark matter is assumed to be pure CDM, normalized to COBE (whereas open models
fail badly). Until recently, it appeared that geometrical tests such as the supernova
Hubble diagram (Perlmutter et al . 1997) or gravitational lensing (Carroll et al . 1992;
Kochanek 1996) were strongly inconsistent with Λ-dominated models, so the overall
situation was badly confused. However, with recent developments in these areas now
appearing to favour a non-zero Λ (Garnavich et al . 1998; Chiba & Yoshii 1997), it
is possible that a consistent picture may be emerging.

The main remaining difficulty for ΛCDM lies in the shape of the large-scale power
spectrum measured from the APM survey around k = 0.1 h Mpc−1. This is a region
of the spectrum that is well within the capability of 2dF and Sloan, so we can
confidently expect this problem to be either confirmed or removed within the next
few years. The subject of structure formation thus stands at a critical point: either
we are close to having a ‘standard model’ for galaxy formation and clustering, or
we may have to accept that radical new ideas are needed. At the current rate of
observational progress, the verdict should not be very far away.

This paper draws on unpublished collaborative work by James Dunlop, Raul Jimenez, Ian
Waddington, Hy Spinrad, Daniel Stern, Arjun Dey and Rogier Windhorst. The work on CMB
anisotropies was performed during a visit to Caltech, for which thanks are due to Tony Read-
head.
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